On Asymptotically Periodic Solutions of Linear Discrete Volterra Equations

نویسنده

  • David W. Reynolds
چکیده

We show that a class of linear nonconvolution discrete Volterra equations has asymptotically periodic solutions. We also examine an example for which the calculations can be done explicitly. The results are established using theorems on the boundedness and convergence to a finite limit of solutions of linear discrete Volterra equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic solutions of discrete Volterra equations

In this paper, we investigate periodic solutions of linear and nonlinear discrete Volterra equations of convolution or non-convolution type with unbounded memory. For linear discrete Volterra equations of convolution type, we establish Fredholm’s alternative theorem and for equations of non-convolution type, and we prove that a unique periodic solution exists for a particular bounded initial fu...

متن کامل

Periodic solutions of non-linear discrete Volterra equations with finite memory

In this paper we discuss the existence of periodic solutions of discrete (and discretized) non-linear Volterra equations with finite memory. The literature contains a number of results on periodic solutions of non-linear Volterra integral equations with finite memory, of a type that arises in biomathematics. The “summation” equations studied here can arise as discrete models in their own right ...

متن کامل

S-asymptotically Ω-periodic Solutions for Semilinear Volterra Equations

We study S-asymptotically ω-periodic mild solutions of the semilinear Volterra equation u′(t) = (a ∗ Au)(t) + f(t, u(t)), considered in a Banach space X, where A is the generator of an (exponentially) stable resolvent family. In particular, we extend recent results for semilinear fractional integro-differential equations considered in [4] and for semilinear Cauchy problems of first order given ...

متن کامل

Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth

In this paper‎, ‎we consider the following Kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$uin H^{1}(mathbb{R}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎The aim of this paper is to study the existence of positive ...

متن کامل

Asymptotic Behavior for Asymptotically Periodic

The properties of ω-limit set and global asymptotic behavior are first obtained for asymptotically autonomous discrete dynamical processes on metric spaces.Then certain equivalence of the asymptotic behavior between an asymptotically periodic semiflows and its associated asymptotically autonomous discrete dynamical process is proved. As some applications, the global behavior of asymptotically p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010